Soft MDI
Polyurethane – Urea Elastomers

Mike Lorenzo, Ashok Sarpeshkar, Jim Riley, Geoff Dennis, Marylyn Donaldson

May 8, 2016
Soft MDI Polyurethane – Urea Elastomers

Overview of soft PU elastomers

Polyurethane vs polyurea elastomers

Amine-curable MDI prepolymers

Applications for soft MDI polyurethane-urea elastomers
Overview of Soft PU Elastomers

Strategies for producing soft PU elastomers

<table>
<thead>
<tr>
<th>Low %NCO prepolymer from high MW polyol</th>
<th>Use of Plasticizers</th>
<th>Adjusting Stoichiometry</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Hot cast, 2 component systems</td>
<td>• Can be added to formulation as a separate component</td>
<td>• Excess polyol (under-indexing) can be used to soften a PU elastomer</td>
</tr>
<tr>
<td>• Limitations: High processing temperatures, lowest hardness available is approximately 70A</td>
<td>• Limitations: Regulatory and health issues. Loss of elastomer flexibility over time and leaching of plasticizer</td>
<td>• Limitations: Loss of elastomer integrity and physical properties</td>
</tr>
</tbody>
</table>
Overview of Soft PU Elastomers
Strategies for producing soft PU elastomers

Quasi – Prepolymer Approach

• Prepolymer with %NCO > 10% + polyol + chain extender
• Limitations: Soft elastomers use high polyol : extender ratio which leads to poor properties
Polyurethane vs Polyurea

Isocyanate

- NCO

Polyol or Extender

- OH

\[\text{Urethane} \]

\[-\text{NH-CO-O-}\]

Isocyanate

- NCO

Polyamine or Extender

- NH\(_2\) (amine)

\[\text{Urea} \]

\[-\text{NH-CO-NH-}\]
Polyurethane vs Polyurea Elastomers

- Polyurea linkage provides more opportunities for hydrogen bonding between neighboring polymer chains, compared to the polyurethane linkage.

- Polyurethane-urea systems are created when reacting an isocyanate with a hydroxyl terminated polyol in addition to an amine.

Example:
- React a typical TDI prepolymer with MbOCA.
- Prepolymer already contains urethane linkages (NCO + OH), urea linkages are formed when available isocyanate reacts with the amine chain extender (NCO + NH$_2$).
- Result is a polyurethane-urea elastomer.
Polyurethane vs Polyurethane-Urea

<table>
<thead>
<tr>
<th></th>
<th>TDI/ester + TMP-TIPA + Plasticizer*</th>
<th>TDI/ester + TMP-TIPA*</th>
<th>TDI/ester + MbOCA*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Polyurethane</td>
<td>Polyurethane</td>
<td>Polyurethane-urea</td>
</tr>
<tr>
<td>Hardness at 20°C (DIN 53505)</td>
<td>Shore A</td>
<td>50A</td>
<td>58A</td>
</tr>
<tr>
<td>Tensile Strength (DIN 53504)</td>
<td>MPa</td>
<td>25</td>
<td>41</td>
</tr>
<tr>
<td>Elongation (DIN 53504)</td>
<td>%</td>
<td>460</td>
<td>430</td>
</tr>
<tr>
<td>Tear Strength: Without nick</td>
<td>(ISO 34-1) kN/m</td>
<td>33</td>
<td>42</td>
</tr>
<tr>
<td>Tear Strength: With nick</td>
<td>(ISO 34-1) kN/m</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>Resilience (DIN 53512)</td>
<td>%</td>
<td>40</td>
<td>33</td>
</tr>
<tr>
<td>Abrasion loss (ISO 4649)</td>
<td>mm³</td>
<td>50</td>
<td>30</td>
</tr>
<tr>
<td>Compression Set (deflection/ 22h/70°C) (ISO 815-1)</td>
<td>%</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

*TDI/ester prepolymer with 3.6% NCO
Amine-Curable MDI Prepolymer Characteristics

• Prepolymer for production of cast polyurethane-urea elastomers

• Special MDI cured with diamine chain extenders (MbOCA, Ethacure 300, MCDEA, etc.)

• Similar processing characteristics to TDI prepolymer, without the TDI monomer

• MDI – amine reaction is not as fast as conventional MDI – amine reactions
Amine-Curable MDI Prepolymer Product Range

Amine-curable MDI ester range

<table>
<thead>
<tr>
<th>% Isocyanate</th>
<th>2.9</th>
<th>4.05</th>
<th>5.85</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shore Hardness*</td>
<td>86A</td>
<td>92A</td>
<td>98A</td>
</tr>
</tbody>
</table>

Amine-curable MDI ether (PTMEG) range

<table>
<thead>
<tr>
<th>% Isocyanate</th>
<th>4.05</th>
<th>6.05</th>
<th>8.05</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shore Hardness*</td>
<td>95A</td>
<td>98A</td>
<td>65D</td>
</tr>
</tbody>
</table>

When extended with MbOCA
Soft Elastomers from Amine-Curable MDI Prepolymers

- Soft elastomers with good physical properties are possible from a 3 component system (dial-a-durometer)
- Amine-curable MDI prepolymer + polyol + diamine chain extender
- 3 component amine-curable MDI polyether systems have been commercially established
- Gel times and de-mold times may be adjusted through catalysis
Physical Properties of Soft Elastomers from Amine-Curable MDI Prepolymers

<table>
<thead>
<tr>
<th></th>
<th>MDI/ PTMEG/ BDO<sup>1</sup></th>
<th>MAX-T/ PTMEG/ MbOCA<sup>2</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Polyurethane</td>
<td>Polyurethane-urea</td>
</tr>
<tr>
<td>Hardness at 20°C (DIN 53505)</td>
<td>Shore</td>
<td>60A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>60A</td>
</tr>
<tr>
<td>Tensile Strength (DIN 53504)</td>
<td>MPa</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>Elongation (DIN 53504)</td>
<td>%</td>
<td>450</td>
</tr>
<tr>
<td></td>
<td></td>
<td>610</td>
</tr>
<tr>
<td>Tear Strength: Without nick (ISO 34-1)</td>
<td>kN/m</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>33</td>
</tr>
<tr>
<td>Tear Strength: With nick (ISO 34-1)</td>
<td>kN/m</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Resilience (DIN 53512)</td>
<td>%</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td></td>
<td>68</td>
</tr>
<tr>
<td>Abrasion loss (ISO 4649)</td>
<td>mm<sup>3</sup></td>
<td>35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>Compression Set (deflection/ 22h/70°C) (ISO 815-1)</td>
<td>%</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>

1. Quasi MDI prepolymer (13.1% NCO) + 2000 MW PTMEG + BDO
2. MAX-T60 SA (6.05% NCO) + 2000 MW PTMEG + MbOCA
Machine Processing of Soft Amine-Curable MDI Elastomers

Machine Requirements:

- Casting machine capable of processing three or more components
- Excellent output and ratio control
- Multiple recipe capability

Procedure for changing hardness:

- Complete pour with previous hardness
- Flush mix head with air/solvent purge (only required with color change)
- Activate proper recipe for new hardness
- Perform short pre-shot to remove any remaining solvent or material in mix head
- Start pouring at new hardness
- Procedure takes approximately 10-45 seconds total depending on the specific changes
Hand Casting of Soft Amine-Curable MDI Elastomers

Soft amine-curable MDI elastomers may be hand cast

Equipment:
- Centrifugal or mechanical mixer
- Ovens for prepolymers, polyols, and chain extenders
- Vacuum chambers
- Mixing containers and balance

Processing Procedure:
- Weigh needed amounts of degassed prepolymers and degassed polyols in the same container
- Thoroughly and quickly mix the prepolymers and polyols
- Weigh chain extenders and catalysts (if needed) into prepolymers/polyols container
- Thoroughly mix prepolymers/polyols + chain extenders
- Pour mix into heated mold, place into oven, demold, and postcure the elastomer
Applications for Soft Amine-Curable MDI Elastomers

• **Soft amine-curable MDI elastomers can be used for a variety of applications:**
 - Processing rollers, wheels, parts used in a dynamic environment
 - Historical applications for soft MDI elastomers, where better physical properties are desired
 - Soft elastomers from amine-curable MDI prepolymerms based on PTMEG exhibit excellent hydrolytic stability, tear strength, and abrasion resistance

• **Processing advantages (compared to 2 component systems):**
 - Elastomers with multiple hardness may be produced by adjusting component ratios, no need to drain and clean tanks
 - Product inventory consolidation (1 prepolymer can be used for multiple hardnesses)
On the Horizon

Commercial success for multiple hardness polyurethane-urea MDI-PTMEG systems...

... Develop multiple hardness polyurethane-urea MDI-polyester systems to complete product line offering
Summary

- Introducing polyurea linkages into a PU elastomer can improve elastomer properties

- Soft elastomers with polyurethane-urea chemistry can be produced with 3 component systems using an amine-curable MDI prepolymer + polyol + diamine chain extender

- Free of TDI monomer, can also eliminate MbOCA by using Ethacure 300

- Versatility - processing of 3 component amine-curable MDI systems can be done via machine casting or hand casting
Forward-Looking Statements

This presentation may contain forward-looking statements based on current assumptions and forecasts made by Covestro AG. Various known and unknown risks, uncertainties and other factors could lead to material differences between the actual future results, financial situation, development or performance of the company and the estimates given here. These factors include those discussed in Covestro’s public reports which are available on the Covestro website at www.covestro.com. Covestro assumes no liability whatsoever to update these forward-looking statements or to conform them to future events or developments.
Thank You