Outline

• Substrate Preparation
• Adhesive Selection, Handling and Application
• Prebake and Molding
• Troubleshooting Bond Failures
• Industry Trends
Substrate Types and Preparation Guidelines

• Various grades of steel and aluminum, others include urethane, rubber and engineered plastics

• Best practice steps:
 – **Degreasing** removes cutting/machining oils, greases, dirt, etc. prior to abrasion step
 – **Abrasion** (blasting, grinding, sanding) removes surface oxidation and increases surface area for primer or adhesive wetting
 – **Final degreasing** removes any carryover residuals from abrasion, a “clean” air blow-off can be substituted
 – Exceptions are pre-treated metals such as zinc plating or zinc phosphate
Blast Media Types

• **Grit: angular shape “cuts”**:
 – G25 - 80 grit media is typical
 – Good anchor profile, 1-3 mils (25-75 microns) is ideal

• **Shot: round shape “peens”**:
 – Less surface area, potential for embedded contamination
 – Typical for rough surfaces like cast iron
Substrate Preparation Precautions

• Match degreaser to type of oil, typically solvent base (MEK, xylene, etc.) or alkaline cleaner

• For stainless steel substrate, use aluminum oxide only, steel media can cause under-bond corrosion

• Avoid excessive lathe grooving, adhesive puddles in bottom of the V, poor adhesion or failure

• Inspect blast media periodically, worn down or contaminated media, poor adhesion or failure

• Once prepared, apply primer or adhesive ASAP (target <2 hours), avoids formation of a weak oxide layer
Adhesive Types and Selection

• **One coat:** *Chemlok®* 218, 213 or 8600 (aqueous):
 – Designed to bond in one step, majority of use
 – Products vary by composition, viscosity and color

• **Two coat:** *Chemlok 219/218, 219/213 or 219/8600:*
 – Primer may improve adhesion for hard-to-bond substrates
 – Improve environmentals (temperature and chemical resistance)
 – 219, 218 and 8600 can be pigmented, <1 gram/gallon

• Others for TPU and Millable Gum

• Testing will determine best product with your specific materials and processes
Handling and Mixing Guidelines

• Always use fresh product, FIFO practices
• Adhere to shelf life/associated storage conditions
• Use proper dilution solvent and amount, mix during addition of dilution solvent to avoid “shock”, never add product to dilution solvent
• Seal cans when not in use to reduce solvent evaporation and minimize contamination
• Store in approved safety cabinets/areas when not in use
Application Techniques

• Applied by brush, spray, roll or dip, since most are manual process, consistent operator technique is key

• Brushing is popular, use clean, dedicated, properly sized brush

• Avoid thick and thin areas, puddles, tears and bare spots, poor adhesion or failure

• If application produces brush marks or globs, use 2 thin coat applications, with drying between coats:
 – 3 to 4 parts product to 1 part dilution solvent by volume
Dry Film Thickness Guidelines

• One coat: Adhesive at 0.75 - 1.25 mils
• Two coat: Primer at 0.2 - 0.4 mils plus adhesive at 0.6 - 0.8 mils = same target as one coat
• Recent work shows 0.3 mils of adhesive over primer shows increased performance under load/250°F (121°C)+
• 1 mil target = 0.001” or 25.4 microns
• Measurement options: digital dry film gauge or 1-2 mil shim with a micrometer
• Common method is color contrast w/witness panel
Chemlok 213 Dry Film Thickness

0.5 mil 1.0 mil <0.5 mils
Dry Film Thickness Precautions

- Caution with aggressive profile on substrate, measurements may be scattered, use a non-abraded substrate as a guideline

- **Too thin (<0.2 mils):** Lack of active adhesive ingredients to provide bond

- **Too thick (+2 mils):** Shearing (cohesive) within adhesive layer

- Optimal dry film thickness is determined with testing of your specific materials and processes
Drying, Handling and Storage of Coated Parts

• Dry 30 - 60 minutes at room temperature between coats (don’t place coated parts in oven immediately after application, blistering may result)
• Minimize handling coated areas, bare hand or dirty gloves, poor adhesion or failure
• For coated parts layover, tote in containers or cover to minimize airborne contamination
• Suggest coated parts be bonded within several shifts, typical maximum 30 day layover
Coated Part Prebake Guidelines

- Prebake coated parts of a minimum of 2 hours at ~250°F, maximum of 325°F, then load to mold
- Prebake allows product to lock into substrate, improves environmental performance of adhesives
- Prebake allows an equilibrium between all materials when substrate and polyurethane come in contact
- Several prebake cycles (cool-down to RT) still allow good bond
- Convection type oven (natural gas or electric) for uniform heat distribution, avoid hot/cold spots
Mold Release, Post Painting and Bond Check

• Caution with silicone containing agents, specifically edges where mold and coated substrate meet

• Follow supplier’s instructions for specific casting and post bake parameters

• Post painting or additional fabrication, caution due excessive temperature

• To test process steps, complete adhesion test if possible:
 – Screw-driver/pliers check along the edge
 – Push-off or peel test with machines
 – Create a taped area to provide a starting tab
Failure Modes Per ASTM International D429

R = Rubber retention
CP = Cement-to-Primer

RC = Rubber-to-Cement
COH = Cohesive
CM = Cement-to-Metal
Cement-to-Metal Mode

- Designated as CM, cement = primer or adhesive
- Primer or adhesive failure at the metal or substrate interface
- Bare substrate with primer or adhesive transferred to polyurethane surface
- Poor anchor profile, blast residue, contamination, oxidation

2 Coat System
- Rubber/Polyurethane
- Adhesive
- Primer
- Metal/Substrate

1 Coat System
- Rubber/Polyurethane
- Adhesive
- Metal/Substrate
Rubber-to-Cement Mode

- Designated as RC, cement = adhesive
- Failure occurs between polyurethane and adhesive
- Look for evidence of adhesive adhering to substrate, but not to polyurethane surface
- Thickness, contaminated surface, prebake cycle

![Diagram showing 2 Coat and 1 Coat Systems](image)
Industry Trends

• OTC (New England states) restricts primer limit to **250 grams/liter**, plus Houston, Dallas and Phoenix metro

• Check your State and Federal regulations for primer and adhesive emissions compliance:
 – Install control equipment
 – Outsourcing, i.e. Custom Coater
 – 219/8600 aqueous “Hybrid” system, lower VOC/HAP option

• Global supply of substrates: caution on rust preventatives applied for shipment

• Inquiries for higher temperature resistance for wheels and rollers

• DISCLAIMER: Information contained herein is based upon tests or data believed to be reliable. Any conclusions or recommendations herein are advisory in nature, are based upon best knowledge currently available to the author, and are offered only as a service to the reader. Inasmuch as LORD Corporation has no control over the exact manner in which others may use this information, it does not guarantee the results to be obtained. LORD Corporation makes no express or implied warranty of reliability, repeatability, merchantability, or fitness for a particular purpose concerning the information provided herein.