Update and Overview of Polyurea Spray Technology and New Amine Chain Extenders Useful in Polyurethane Systems

Mark L. Posey
Huntsman LLC : Austin Research Labs
2005 Polyurethane Manufacturers Association Annual Meeting
Rancho Mirage, CA April 17-19, 2005
The History and Background of Polyurea Spray Elastomers
Key Developments Along the Polyurea Spray Elastomer Timeline

1980’s: Texaco Chemical’s Austin Research Laboratories develop polyurea reaction-injection-molding (RIM) for automotive exterior body panel applications.

1989: Texaco Chemical’s Austin Research Laboratories develop and introduce 100% solids polyurea spray elastomer coatings.

1990’s: Numerous equipment advances by industry leaders.

1990’s: Huntsman Corporation and ICI Polyurethanes co-develop and commercialize isocyanate prepolymers for polyurea spray.

Key Developments Along the Polyurea Spray Elastomer Timeline-cont.

2000: Formation of the Polyurea Development Association

2002: Huntsman commercializes JEFFLINK® 754 chain extender for polyurea and other polymer markets.

2002: UOP suddenly exits chain extender market in December.

2003: UOP sells rights to UNILINK® 4200 and CLEARLINK® 1000 chain extenders to Dorf Ketal in India.

2004: Nissan is first company to offer OEM truck-bed liner.

2005: Huntsman commercializes Secondary Polyetheramines.
THE POLYUREA SPRAY ELASTOMER MARKET AT A GLANCE*

ESTIMATED 2001 SYSTEM SOLD: 20-25MM LBS

ESTIMATED MARKET VALUE: $60-75MM

GEOGRAPHIC BREAKDOWN:

<table>
<thead>
<tr>
<th>Region</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>NORTH AMERICA</td>
<td>85%</td>
</tr>
<tr>
<td>APAC</td>
<td>10%</td>
</tr>
<tr>
<td>EUROPE</td>
<td>4%</td>
</tr>
<tr>
<td>SOUTH AMERICA</td>
<td>1%</td>
</tr>
</tbody>
</table>

-2001 Industry Report Conducted by the Polyurea Development Association
POLYUREA SPRAY ELASTOMER APPLICATION AREAS*

- 60% Concrete
- 15% Bedliners
- 10% Steel
- 10% Roofing
- 5% Other

*-2001 Industry Report Conducted by the Polyurea Development Association
CHEMICAL REACTIONS:
POLYURETHANE AND POLYUREA

\[
\text{Isocyanate} + \text{Polyol} = \text{Urethane}
\]

\[
\text{Isocyanate} + \text{Polyamine} = \text{Urea}
\]
NOTE:
A myriad of other additives can be incorporated into any of these systems. Examples include pigments, adhesion promoters, UV-absorbers, anti-oxidants, and texturing agents.
BENEFITS OF POLYUREA SPRAY ELASTOMERS

- Sprayable coating application.
- Two component, 100% solids systems, Zero VOC.
- 1:1 volume mix ratio, wide formulation latitude.
- Fast reactivity and cure without a catalyst, lack of catalyst leads to better long term stability.
- Relatively moisture and temperature insensitive during application.
- Excellent physical properties.
- High thermal stability (up to 175° C).
- Excellent abrasion resistance.
TYPICAL PHYSICAL PROPERTIES FOR POLYUREA ELASTOMERS

- **Tensile Strength** up to 28 MPa (4000 psi)
- **Shore Hardness** A30 to D75
- **Elongation** up to 1200 %
- **Tear Strength** up to 127000 N/m (725 pli)
- **100% Modulus** (Stress@100%) up to 14 MPa (2000 psi)
- **300% Modulus** (Stress@300%) up to 17 MPa (2500 psi)
Common Raw Materials for Polyurea Spray Elastomers

“New” Amines for Possible Use in Polyurethanes
ISOCYANATE SYSTEMS FOR POLYUREA ELASTOMER COATINGS

Aromatic-Based Systems

\[
\begin{align*}
4,4{'}-\text{MDI} & \quad \text{OCN} \quad \text{NCO} \\
2,4{'}-\text{MDI} \quad \text{OCN} & \quad \text{NCO}
\end{align*}
\]

Aliphatic-Based Systems

\[
\begin{align*}
\text{IPDI} & \quad \text{OCN} \quad \text{NCO} \\
\text{H12MDI} & \quad \text{OCN} \quad \text{NCO} \\
\text{HDI Trimer} & \quad \text{OCN} \quad \text{NCO}
\end{align*}
\]
ISOCYANATE PREPOLYMERS FOR ELASTOMER COATINGS

Aromatic-Based Systems

MDI-PPG-2000 Prepolymer

Aliphatic-Based Systems

IPDI - D-2000 Prepolymer
AROMATIC CHAIN EXTENDERS FOR POLYUREA ELASTOMER COATINGS

ETHACURE® 100 curing agent

ETHACURE® 300 curing agent

UNILINK® 4200 chain extender

ETHACURE is a trademark of Albemarle. UNILINK is a trademark of Dorf Ketal.
CYCLOALIPHATIC CHAIN EXTENDERS

JEFFLINK® 754 curing agent

CLEARLINK® 1000 curing agent

CLEARLINK is a trademark of Dorf Ketal.
JEFFLINK is a trademark of Huntsman LLC or an affiliate thereof in one or more, but not all countries.
Secondary Aspartic Ester Amines

DESMOPHEN® NH1420 curing agent
JEFFAMINE® POLYETHERAMINES
FOR POLYUREA ELASTOMER COATINGS

Product	x
JEFFAMINE® D-400 amine | 5-6
JEFFAMINE® D-2000 amine | 32-34

JEFFAMINE(R) T-403 amine \(x + y + z = \sim 5.3 \)
\(R = C_3H_5 \quad n = 1 \)

JEFFAMINE(R) T-3000 amine \(x + y + z = \sim 50 \)
\(R = H \quad n = 0 \)

JEFFAMINE(R) T-5000 amine \(x + y + z = \sim 85 \)
\(R = H \quad n = 0 \)

JEFFAMINE is a trademark of Huntsman LLC or an affiliate thereof in one or more, but not all countries.
New Secondary Polyetheramines

- Proprietary Huntsman catalyst technology allows high secondary amine formation with little primary or tertiary.

- Intrinsic reactivity drops roughly a factor of 20 for secondary compared to primary amines.
 - Steric hindrance plays an additional role
- Cure speed (gel time) of a formulation is dependent on concentrations and intrinsic reactivity.
- Products are stable, so there is no off-gassing of reversible blocking agents.
Huntsman’s New Secondary Polyetheramines

<table>
<thead>
<tr>
<th>Product Name</th>
<th>XTJ-584</th>
<th>XTJ-585</th>
<th>XTJ-576</th>
<th>XTJ-586</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secondary Version of</td>
<td>D-230</td>
<td>D-400</td>
<td>D-2000</td>
<td>T-403</td>
</tr>
<tr>
<td>Approximate Functionality</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Density, 25°C, g/cm³</td>
<td>0.885</td>
<td>0.921</td>
<td>0.978</td>
<td>0.923</td>
</tr>
<tr>
<td>Kinematic Viscosity, 25°C, cSt</td>
<td>7</td>
<td>18</td>
<td>209</td>
<td>46</td>
</tr>
<tr>
<td>Total Amine, meq/gram</td>
<td>5.3-6.3</td>
<td>3.5-4.0</td>
<td>0.9-1.0</td>
<td>4.5-5.5</td>
</tr>
<tr>
<td>Target Equivalent weight, grams/eq</td>
<td>172</td>
<td>270</td>
<td>1042</td>
<td>204</td>
</tr>
</tbody>
</table>
COMMON ADDITIVES:

- Pigment, such as TiO$_2$
- Adhesion Promoter
- UV-Stabilizers/Antioxidants
- Thixotrope
- “Defoamer”/”Dispersant”
- Solvent
- Plasticizer
- “Filler”
Processing Polyurea Spray Elastomers
Static-Mix Dispensing Equipment
Gusmer H-2000
Proportioning Unit
HIGH TEMPERATURE/ HIGH PRESSURE IMPINGEMENT-MIX SPRAY APPLICATION
STANDARD SPRAY PROCESSING PARAMETERS

• **Component Viscosity:** <2000 cPs (at RT)
 – **If too high:** pump cavitation may occur
 – **If mismatched:** large pressure differential may exist
 – along with poor mixing

• **Operating Pressure:** >138 bar (2000 psi)
 – **If too low:** poor mixing and loss of spray
 – pattern may occur.

• **System Temperature:** 60-80°C (150-170°F)
 – **If too low:** poor mixing and loss of spray
 – pattern may occur.
Formulating Polyurea Spray Elastomers
KEY FORMULATION PARAMETERS AFFECTING ELASTOMER PROPERTIES

SYSTEM TYPE: aromatic or aliphatic (cost vs. UV-color stability)

PREPOLYMER TYPE: isocyanate type, isomer distribution, and polyol (polyetheramine) composition can greatly affect elastomer properties

INDEX: can be used to help overcome brittleness and extend working time (INDEX = Free Eq’ s Isocyanate/ Free Eq’ s Amine)

CROSSLINK DENSITY: can affect brittleness/flexibility, permeability, and chemical resistance

SECONDARY AMINE CONTENT: modulates system speed
THE EFFECT OF %NCO VALUE ON ELASTOMER HARDNESS

![Graph showing the relationship between NCO Value (%) and Hardness (Shore D). The data points are plotted on a line graph, indicating a positive correlation between the two variables.](image-url)
FINDING THE OPTIMAL SYSTEM INDEX
THE DECELERATING EFFECTS OF SECONDARY AMINES

Time (s)

Secondary Amine Content (% Resin Side)

0% 8.1% 18.6% 29.9%

Gel Time
Tack-Free Time
THE TYPICAL POLYUREA SPRAY ELASTOMER FORMULATION PROFILE

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISOCYANATE COMPONENT</td>
<td></td>
</tr>
<tr>
<td>Adduct, Prepolymer, or Quasi-Prepolymer</td>
<td>100%</td>
</tr>
<tr>
<td>RESIN COMPONENT</td>
<td></td>
</tr>
<tr>
<td>Polyetheramine</td>
<td>40-70%</td>
</tr>
<tr>
<td>Chain Extender</td>
<td>10-50%</td>
</tr>
<tr>
<td>Additives</td>
<td>0-10%</td>
</tr>
</tbody>
</table>

VOLUME RATIO: 1:1
STARTING-POINT FORMULATION FOR AN AROMATIC POLYUREA COATING

ISOCYANATE COMPONENT

15.4% NCO MDI-Based Quasi-Prepolymer 100%

RESIN COMPONENT

JEFFAMINE® D-2000 amine 57.7%
JEFFAMINE® T-5000 amine 5.3%
ETHACURE® 100 curing agent 18.6%
UNILINK® 4200 curing agent 18.6%

Index: 1.05 Volume Ratio: 1:1

Gel Time: 7.0 s Tack-Free Time: 12.5 s
Hardness: D51
Tensile Strength: 2128 psi
Elongation: 529 %
Modulus, 100%: 1027 psi
Modulus, 300%: 1471 psi
Tear Strength: 456 pli
STARTING-POINT FORMULATION FOR AN ALIPHATIC POLYUREA COATING

ISOCYANATE COMPONENT

<table>
<thead>
<tr>
<th>Component</th>
<th>Quantity</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPDI / D-2000 or PPG-2000</td>
<td></td>
<td>100%</td>
</tr>
<tr>
<td>Pre-polymer: 16.8% NCO</td>
<td></td>
<td>100%</td>
</tr>
</tbody>
</table>

Lot Number:	8276-59
Gel Time:	5.0 s
Tack-Free Time:	22.0 s

RESIN COMPONENT

<table>
<thead>
<tr>
<th>Component</th>
<th>Quantity</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>JEFFAMINE® D-2000 amine</td>
<td>39.0%</td>
<td></td>
</tr>
<tr>
<td>JEFFAMINE® T-5000 amine</td>
<td>10.0%</td>
<td></td>
</tr>
<tr>
<td>JEFFLINK® 754 curing agent</td>
<td>44.0%</td>
<td></td>
</tr>
<tr>
<td>TiO₂</td>
<td>7.0%</td>
<td></td>
</tr>
</tbody>
</table>

| Index: | 1.06 |
| Volume Ratio: | 1:1 |

Hardness:	D55
Tensile Strength:	2670 psi
Elongation:	875 %
Modulus, 100%:	1003 psi
Modulus, 300%:	1120 psi
Tear Strength:	526 pli
Application Examples of Polyurea Spray Elastomers
Polyurea Applications

• Steel coating - automotive, bridges, tanks, etc.
• Concrete coating - roads, parking structures, water-proofing, explosion mitigation, etc.
• Naval vessels - corrosion protection, non-skid, anti-fouling, explosion mitigation.
• Water/waste-water tanks and piping
• Other substrates - polystyrene, plastic,
SLOW-SET POLYUREA ELASTOMER TANK LININGS
POLYUREA ELASTOMERS AS PROTECTIVE COATINGS
Truck Bed Liner
Forms of Polyurea and Hybrids

- Caulk for concrete joints (low strength, high elongation)
- Adhesive for a variety of substrates.
- Polyurea Spray Foam.
- Polyetheramines and amine chain extenders can be added to PU foam formulations to make hybrid PU foams.
- Reaction-Injection Molding (RIM) and other molded polyurea parts.
- Roll-on polyurea with hours of work time
- Sprayed-on elastomers with seconds to hours dry time.
Polyurethane Uses of Amines

• Isocyanate Prepolymers
• Chain extenders for quicker viscosity build
• Cast Polyurea parts
• Polyurethane Dispersions
• 1K coatings (especially secondary amines)
• Polyurethane/Polyurea Hybrids
Conclusions

• The lines between polyurethane and polyurea are becoming blurred.
• There are many new amines available, especially secondaries, that can be used in PU formulations.
• The ability to use both polyols and amines greatly increases formulating flexibility.
• Formulators and applicators with knowledge of both chemistries will increase their breadth of projects and profits.
More Information

- JEFFAMINE.com
- Huntsmanchainextenders.com
- Polyurea Development Association (PDA) www.pda-online.org
- mark_posey@huntsman.com

Disclaimer

All information contained herein is provided "as is" without any warranties, express or implied, and under no circumstances shall the authors or Huntsman be liable for any damages of any nature whatsoever resulting from the use or reliance upon such information. Nothing contain in this presentation should be construed as a license under any intellectual property right of any entity, or as a suggestion, recommendation, or authorization to take any action that would infringe any patent. The term "Huntsman" is used herein for convenience only, and refers to Huntsman LLC, its direct and indirect affiliates, and their employees, officers, and directors.